Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery.
نویسندگان
چکیده
Synthetic peptides homologous to the Gap 26 and Gap 27 domains of the first and second extracellular loops of the major vascular connexins (Cx37, Cx40, and Cx43) have been used to investigate the role of gap junctions in endothelium-derived hyperpolarizing factor (EDHF)-type relaxations of the rat hepatic artery. These peptides were designated 37,40Gap 26, 43Gap 26, 37,43Gap 27, and 40Gap 27, according to connexin specificity. When administered at 600 microM, none of the peptides individually affected maximal EDHF-type relaxations to ACh. By contrast, at 300 microM each, paired peptide combinations targeting more than one connexin subtype attenuated relaxation by up to 50%, and responses were abolished by the triple peptide combination 43Gap 26 + 40Gap 27 + 37,43Gap 27. In parallel experiments with A7r5 cells expressing Cx40 and Cx43, neither 43Gap 26 nor 40Gap 27 affected intercellular diffusion of Lucifer yellow individually but, in combination, significantly attenuated dye transfer. The findings confirm that functional cell-cell coupling may depend on more than one connexin subtype and demonstrate that direct intercellular communication via gap junctions constructed from Cx37, Cx40, and Cx43 underpins EDHF-type responses in the rat hepatic artery.
منابع مشابه
Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions and phospholipase A2.
NO- and prostanoid-independent relaxations are generally assumed to be mediated by an endothelium-derived hyperpolarizing factor (EDHF) that has been postulated to be an arachidonic acid metabolite. Recent evidence also suggests that direct heterocellular gap junctional communication (GJC) between endothelium and smooth muscle contributes to NO-independent relaxations. In the present study we h...
متن کاملInvolvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor.
The nature of the vasodilator endothelium-derived hyperpolarizing factor (EDHF) is controversial, putatively involving diffusible factors and/or electrotonic spread of hyperpolarization generated in the endothelium via myoendothelial gap junctions (MEGJs). In this study, we investigated the relationship between the existence of MEGJs, endothelial cell (EC) hyperpolarization, and EDHF-attributed...
متن کاملGap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation.
We have compared the mechanisms that contribute to endothelium-derived hyperpolarizing factor (EDHF)-type responses induced by ACh and the Ca(2+) ionophore A-23187 in the rabbit iliac artery. Relaxations to both agents were associated with ~1.5-fold elevations in smooth muscle cAMP levels and were attenuated by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine (DDA) and potentiated by the c...
متن کاملAscorbic acid and tetrahydrobiopterin potentiate the EDHF phenomenon by generating hydrogen peroxide
AIMS Our objective was to investigate whether pro-oxidant properties of ascorbic acid (AA) and tetrahydrobiopterin (BH(4)) modulate endothelium-dependent, electrotonically mediated arterial relaxation. METHODS AND RESULTS In studies with rabbit iliac artery (RIA) rings, NO-independent, endothelium-derived hyperpolarizing factor (EDHF)-type relaxations evoked by the sarcoplasmic endoplasmic re...
متن کاملHydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization.
OBJECTIVE The purpose of this study was to test the hypothesis that H(2)O(2) contributes to the EDHF phenomenon by mobilizing endothelial Ca(2+) stores. METHODS AND RESULTS Myograph studies with rabbit iliac arteries demonstrated that EDHF-type relaxations evoked by the SERCA inhibitor cyclopiazonic acid (CPA) required activation of K(Ca) channels and were potentiated by exogenous H(2)O(2) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 280 6 شماره
صفحات -
تاریخ انتشار 2001